Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & y^{\prime}=3 x^{2}-5 \\ & \text { their } y^{\prime}=0 \\ & (1.3,-4.3) \text { cao } \\ & (-1.3,4.3) \text { cao } \end{aligned}$	M1 M1 A1 A1 [4]	or A1 for $x= \pm \sqrt{\frac{5}{3}}$ oe soi allow if not written as co-ordinates if pairing is clear	ignore any work relating to second derivative
1	(ii)	crosses axes at $(0,0)$ and $(\pm \sqrt{5}, 0)$ sketch of cubic with turning points in correct quadrants and of correct orientation and passing through origin x-intercepts $\pm \sqrt{ } 5$ marked	B1 B1 B1 B1 [4]	condone x and y intercepts not written as co-ordinates; may be on graph $\pm(2.23$ to 2.24$)$ implies $\pm \sqrt{ } 5$ may be in decimal form ($\pm 2.2 \ldots$)	See examples in Appendix must meet the x-axis three times B0 eg if more than 1 point of inflection
1	(iii)	```substitution of x=1 inf '(x)=3\mp@subsup{x}{}{2}-5 -2 y--4 = (their f '(1)) \times (x-1) oe -2x-2=\mp@subsup{x}{}{3}-5x and completion to given result www use of Factor theorem in \mp@subsup{x}{}{3}-3x+2 with -1 or }\pm x = - 2 obtained correctly```	A1 M1* M1dep* M1 A1 [6]	or $-4=-2 \times(1)+c$ or any other valid method; must be shown	sight of -2 does not necessarily imply M1: check $\mathrm{f}^{\prime}(x)=3 x^{2}-5$ is correct in part (i) eg long division or comparing coefficients to find $(x-1)\left(x^{2}+x-2\right)$ or $(x+2)\left(x^{2}-2 x+1\right)$ is enough for M1 with both factors correct NB MOA0 for $x\left(x^{2}-3\right)=-2$ so $x=-2$ or $x^{2}-3=-2$ oe

2		$(x+5)(x-2)(x+2)$	2	M1 for $a(x+5)(x-2)(x+2)$	2
	ii	$\begin{aligned} & {[(x+2)]\left(x^{2}+3 x-10\right)} \\ & x^{3}+3 x^{2}-10 x+2 x^{2}+6 x-20 \end{aligned}$ 0 .	M1 M1	for correct expansion of one pair of their brackets for clear expansion of correct factors - accept given answer from $(x+5)\left(x^{2}-4\right)$ as first step	2
	iii	$y^{\prime}=3 x^{2}+10 x-4$ their $3 x^{2}+10 x-4=0$ s.o.i. $x=0.36 \ldots$ from formula o.e. $(-3.7,12.6)$	M2 M1 A1 B1+1	M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change	
	iv	$(-1.8,12.6)$	B1+1	accept ($-1.9,12.6$) or f.t. $(1 / 2$ their $\max x$, their max y)	6 2

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& i

ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& y^{\prime}=6 x^{2}-18 x+12 \\
& =12 \\
& y=7 \text { when } x=3
\end{aligned}
$$ \\
tgt is $y-7=12(x-3)$ verifying $(-1,-41)$ on tgt
$$
y^{\prime}=0 \text { soi }
$$ \\
quadratic with 3 terms
$$
x=1 \text { or } 2
$$
$$
y=3 \text { or } 2
$$ \\
cubic curve correct orientation touching x - axis only at $(0.2,0)$ max and min correct curve crossing y axis only at -2

 \&

M1 \\
M1 \\
B1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
G1 \\
G1 \\
G1

 \&

condone one error subst of $x=3$ in their y^{\prime} \\
f.t. their y and y^{\prime} or B2 for showing line joining $(3,7)$ and $(-1,-41)$ has gradient 12 \\
Their y^{\prime} \\
Any valid attempt at solution or A1 for $(1,3)$ and A1 for $(2,2)$ marking to benefit of candidate \\
f.
\end{tabular} \& 5

4
4
3 \\
\hline
\end{tabular}

