Question		on	Answer	Marks	Guidance		
1	(i)		$y' = 3x^2 - 5$	M1			
			their $y' = 0$	M1			
			(1.3, -4.3) cao	A1	or A1 for $x = \pm \sqrt{\frac{5}{3}}$ oe soi		
			(- 1.3, 4.3) cao	A1	allow if not written as co-ordinates if pairing is clear	ignore any work relating to second derivative	
				[4]		~	
1	(ii)		crosses axes at (0, 0)	B1	condone <i>x</i> and <i>y</i> intercepts not written as co-ordinates; may be on graph	See examples in Appendix	
			and $(\pm\sqrt{5}, 0)$	B1	\pm (2.23 to 2.24) implies $\pm \sqrt{5}$		
			sketch of cubic with turning points in correct	B1		must meet the <i>x</i> -axis three times	
			quadrants and of correct orientation and			B0 eg if more than 1 point of inflection	
			passing through origin				
			x-intercepts $\pm \sqrt{5}$ marked	B1	may be in decimal form (± 2.2)		
1	(;;;;)			[4] M1		sight of 2 does not necessarily imply	
1	(111)		substitution of $x = 1$ in $f'(x) = 3x^2 - 5$	1011		signt of -2 does not necessarily imply	
						M1: check f $(x) = 3x - 5$ is correct	
				. 1		in part (i)	
			-2				
			$y - 4 = (\text{their f}'(1)) \times (x - 1) \text{ oe}$	M1*	or $-4 = -2 \times (1) + c$		
			$-2x - 2 = x^3 - 5x$ and completion to given result www	M1dep*			
			use of Factor theorem in $x^3 - 3x + 2$ with -1 or ± 2	M1	or any other valid method; must be shown	eg long division or comparing coefficients to find $(x - 1)(x^2 + x - 2)$ or $(x + 2)(x^2 - 2x + 1)$ is enough for M1	
			x = -2 obtained correctly	A1		with both factors correct NB M0A0 for $x(x^2 - 3) = -2$ so $x = -2$ or $x^2 - 3 = -2$ oe	
				[6]			

2	i	(x+5)(x-2)(x+2)	2	M1 for $a(x+5)(x-2)(x+2)$	2
	ii	$[(x+2)](x^2+3x-10)$	M1	for correct expansion of one pair of their brackets	
		$x^{3} + 3x^{2} - 10x + 2x^{2} + 6x - 20$ o.	M1	for clear expansion of correct factors – accept given answer from $(x + 5)(x^2 - 4)$ as first step	2
	111	$y' = 3x^2 + 10x - 4$ their $3x^2 + 10x - 4 = 0$ s.o.i. x = 0.36 from formula o.e.	M2 M1 A1	M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change	
		(-3.7, 12.6)	B1+1		6
	iv	(-1.8, 12.6)	B1+1	accept (-1.9, 12.6) or f.t.(½ their max x, their max y)	2

3	(i)	$3x^2 - 6x - 9$	M1		
Q.,		use of their $y' = 0$	M1		
	1.1	x = -1	AI		
		x = 3	AI		
		valid method for determining nature of turning point	MI	1.1	
		max at $x = -1$ and min at $x = 3$	Al	c.a.o.	6
	(ii)	$x(x^2 - 3x - 9)$	M1		
	1.0	$\frac{3\pm\sqrt{45}}{2} \text{ or } (x-\frac{3}{2})^2 = 9 + \frac{9}{4}$	M1		
		$0, \frac{3}{2} \pm \frac{\sqrt{45}}{2}$ o.e.	Al		3
	(iii)	sketch of cubic with two turning points correct way up	GI		
		x-intercepts - negative, 0, positive shown	DG)		2

4	i	$y' = 6x^2 - 18x + 12$	M1	condone one error	
		= 12	M1	subst of $x = 3$ in their y'	
		y = 7 when $x = 3$	B1		
		tgt is $y - 7 = 12 (x - 3)$	M1	f.t. their y and y'	
		verifying $(-1, -41)$ on tgt	A1	or B2 for showing line joining (3, 7) and	
				(-1, -41) has gradient 12	5
	ii	y' = 0 soi	M1	Their y'	
		quadratic with 3 terms	M1	Any valid attempt at solution	
		x = 1 or 2	A1	or A1 for $(1, 3)$ and A1 for $(2, 2)$ marking	
		y = 3 or 2	A1	to benefit of candidate	4
	iii	cubic curve correct orientation	G1		
		touching x- axis only at (0.2,0)			
		max and min correct	G1	f.	
		curve crossing y axis only at -2	G1		3

5	i	y' = 6 - 2x y' = 0 used x = 3 y = 16	M1 M1 A1 A1	condone one error	
		(0, 7) (–1, 0) and (7,0) found or marked on graph	3	1 each	
		sketch of correct shape	1	must reach pos. y - axis	8
	ii	58.6 to 58.7	3 M1	B1 for $7x + 3x^2 - x^3/3$ [their value at 5] – [their value at 1] dependent on integration attempted	3
	iii	using his (ii) and 48	1		1